Computer vision YOLO11 model
This commit is contained in:
52
Test_logic.py
Normal file
52
Test_logic.py
Normal file
@@ -0,0 +1,52 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
from ultralytics import YOLO
|
||||
import cv2
|
||||
|
||||
# Input and output video paths
|
||||
video_path = r'D:\AIM\pecan\GH014359.mp4'
|
||||
video_path_out = r'D:\AIM\pecan\GH014359_out.mp4'
|
||||
|
||||
cap = cv2.VideoCapture(video_path)
|
||||
ret, frame = cap.read()
|
||||
H, W, _ = frame.shape
|
||||
out = cv2.VideoWriter(video_path_out, cv2.VideoWriter_fourcc(*'MP4V'), int(cap.get(cv2.CAP_PROP_FPS)), (W, H))
|
||||
|
||||
# Load the YOLO model
|
||||
model = YOLO(r"D:\AIM\pecan\runs\detect\train2\weights\best.pt") # Load a custom model
|
||||
|
||||
threshold = 0.5
|
||||
detected_cracked = False # Initialize a flag for detecting cracked pecans
|
||||
|
||||
while ret:
|
||||
# Perform detection on the current frame
|
||||
results = model(frame)[0]
|
||||
|
||||
for result in results.boxes.data.tolist():
|
||||
x1, y1, x2, y2, score, class_id = result
|
||||
|
||||
if score > threshold:
|
||||
# Draw bounding boxes and labels
|
||||
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4)
|
||||
label = results.names[int(class_id)].upper()
|
||||
cv2.putText(frame, f"{label} {score:.2f}", (int(x1), int(y1 - 10)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA)
|
||||
|
||||
# Check for the "cracked" label
|
||||
if label == "CRACKED":
|
||||
detected_cracked = True
|
||||
|
||||
# Write the processed frame to the output video
|
||||
out.write(frame)
|
||||
ret, frame = cap.read()
|
||||
|
||||
# Determine the final label based on detections
|
||||
final_label = "CRACKED" if detected_cracked else "GOOD"
|
||||
|
||||
# Print the final label
|
||||
print(f"Final Label: {final_label}")
|
||||
|
||||
# Release video resources
|
||||
cap.release()
|
||||
out.release()
|
||||
cv2.destroyAllWindows()
|
||||
Reference in New Issue
Block a user